Telomerase abrogates aneuploidy-induced telomere replication stress, senescence and cell depletion
نویسندگان
چکیده
The causal role of aneuploidy in cancer initiation remains under debate since mutations of euploidy-controlling genes reduce cell fitness but aneuploidy strongly associates with human cancers. Telomerase activation allows immortal growth by stabilizing telomere length, but its role in aneuploidy survival has not been characterized. Here, we analyze the response of primary human cells and murine hematopoietic stem cells (HSCs) to aneuploidy induction and the role of telomeres and the telomerase in this process. The study shows that aneuploidy induces replication stress at telomeres leading to telomeric DNA damage and p53 activation. This results in p53/Rb-dependent, premature senescence of human fibroblast, and in the depletion of hematopoietic cells in telomerase-deficient mice. Endogenous telomerase expression in HSCs and enforced expression of telomerase in human fibroblasts are sufficient to abrogate aneuploidy-induced replication stress at telomeres and the consequent induction of premature senescence and hematopoietic cell depletion. Together, these results identify telomerase as an aneuploidy survival factor in mammalian cells based on its capacity to alleviate telomere replication stress in response to aneuploidy induction.
منابع مشابه
Multiple Rad52-Mediated Homology-Directed Repair Mechanisms Are Required to Prevent Telomere Attrition-Induced Senescence in Saccharomyces cerevisiae
Most human somatic cells express insufficient levels of telomerase, which can result in telomere shortening and eventually senescence, both of which are hallmarks of ageing. Homology-directed repair (HDR) is important for maintaining proper telomere function in yeast and mammals. In Saccharomyces cerevisiae, Rad52 is required for almost all HDR mechanisms, and telomerase-null cells senesce fast...
متن کاملCell populations can use aneuploidy to survive telomerase insufficiency
Telomerase maintains ends of eukaryotic chromosomes, telomeres. Telomerase loss results in replicative senescence and a switch to recombination-dependent telomere maintenance. Telomerase insufficiency in humans leads to telomere syndromes associated with premature ageing and cancer predisposition. Here we use yeast to show that the survival of telomerase insufficiency differs from the survival ...
متن کاملParadoxical delay of senescence upon depletion of BRCA2 in telomerase‐deficient worms
BRCA2 is a multifunctional tumor suppressor involved in homologous recombination (HR), mitotic checkpoint regulation, and telomere homeostasis. Absence of Brca2 in mice results in progressive shortening of telomeres and senescence, yet cells are prone to neoplastic transformation with elongated telomeres, suggesting that BRCA2 has positive and negative effects on telomere length regulation alon...
متن کاملTelomere dysfunction puts the brakes on oncogene-induced cancers.
Senescence represents a major tumour suppressor checkpoint activated by telomere dysfunction or cellular stress factors such as oncogene activation. In this issue of The EMBO Journal, Suram et al (2012) reveal a surprising interconnection between oncogene activation and telomere dysfunction induced senescence. The study supports an alternative model of tumour suppression, indicating that oncoge...
متن کاملTelomere Length and Aging
Telomeres, the TTAGGG tandem repeats at the ends of chromosomes, become progressively shortened with each replication of cultured human somatic cells (reviewed in Wong and Collins (Wong & Collins 2003)) until a critical length is achieved, at which point the cell enters replicative senescence. This situation can be reversed by the enzyme named telomerase that is responsible for Telomere Length ...
متن کامل